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INTRODUCTION

Interactions between physical and biological factors
can cause strong fluctuations in the patterns of dis-
tribution and abundance of marine biological assem-
blages. The quantitative description of such patterns is
the basis for understanding processes that structure
assemblages of organisms (Andrew & Mapstone 1987,

Underwood & Chapman 1998). Anthropogenic distur-
bance has the potential to alter patterns of species’
composition and abundance at various spatial and
temporal scales. A crucial step for detecting the effects
of human activities on natural systems is the develop-
ment of a suite of reliable, rapid and cost-effective
analytical procedures that are able to distinguish be-
tween natural and human-induced changes. 
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ABSTRACT: Characterizing the potential effects of human activities on natural systems is a central
problem in applied ecology. This requires the development of analytical procedures able to separate
human perturbation from natural spatio-temporal variability displayed by most populations. Beyond-
BACI experimental designs provide a framework to address these issues but, to date, their use is
limited to the analysis of human impacts on the abundance of single species or other univariate
measures. Here, we describe in detail an asymmetrical design that included 1 impact location (I) and
a set of 3 controls (Cs), sampled at a hierarchy of spatial scales 4 times over a period of 15 mo. We
focused on shallow subtidal assemblages of sessile organisms exposed to sewage discharge along a
stretch of coast in southern Italy. The purpose of this paper is to illustrate (1) the comparison of vari-
ance components for the assessment of impacts and (2) the use of recently developed multivariate
methods (distance-based premutational MANOVA) in the analysis of multivariate species data in
response to a complex asymmetrical design. Results indicated that temporal changes in the whole
assemblage at I were distinct from those occurring at Cs, and that the nature of this difference
(although not its size) was fairly consistent through time. A suite of taxa was identified as important
in characterizing the differences found between I and Cs. Some algae (e.g. Colpomenia sinuosa,
Gelidium sp. and Pterocladiella sp.), in particular, occurred uniquely at I. Univariate analyses indi-
cated significant Time × I-v-Cs interactions for several taxa, and significantly smaller spatial variation
at the scale of quadrats at I compared to Cs. In contrast, the small-scale spatial variation in the num-
ber of taxa was significantly greater at I than at Cs. The findings of this study have important impli-
cations for future multivariate and univariate analyses in environmental impact assessment.
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Experimental ecology has strongly influenced the
field of environmental impact assessment, and consid-
erable efforts have been devoted to improve the logical
structure and the analytical procedures for assessment
of environmental impacts (Stewart-Oaten et al. 1986,
Underwood & Peterson 1988, Fairweather 1991, Osen-
berg et al. 1994). Various sampling designs and analyt-
ical methods have been proposed to detect changes in
single response variables. The BACI (Before/After-
Control/Impact) approach, in particular, has been pro-
posed to tease apart the effects of human impacts from
natural variability (Osenberg & Schmitt 1996). Since
the first formulation of BACI experimental designs
(Green 1979), various improvements have been devel-
oped to deal with cases of spatial and temporal con-
founding (Bernstein & Zalinski 1983, Stewart-Oaten et
al. 1986, Eberhardt & Thomas 1991). The development
of beyond-BACI designs (Underwood 1991), in par-
ticular, has led to significant advances in the detection
of impacts associated with human activities. Such
designs use multiple control locations and the data are
usually analyzed with asymmetrical analysis of vari-
ance due to the presence of a single disturbed location.
In this approach, an impact, if it exists, can be detected
as a statistical interaction in the difference between
the impacted and control locations from before to after
the disturbance. Thorough discussions of beyond-
BACI designs, including several examples and their
interpretation, are provided by Underwood (1991,
1992, 1993, 1994). Further examples of the perfor-
mance of BACI and beyond-BACI procedures are illus-
trated by Hewitt et al. (2001), whereas Benedetti-
Cecchi (2001) discussed an approach based on Monte
Carlo simulations to optimize such complex designs.
Stewart-Oaten & Bence (2001) discussed a number of
potential problems of beyond-BACI procedures and
emphasized a model-based philosophy to the analysis
of impacts.

A possible advantage of beyond-BACI designs is
that they can be modified and applied in tests of impact
when no data have been obtained before the pur-
ported impact and, thus, only ‘after’ data are available.
These ‘ACI’ (After-Control/Impact) designs, though
more limited in establishing cause–effect relationships
between human interventions and responses of
populations, have been widely used in environmental
impact studies (Chapman et al. 1995, Roberts 1996,
Lardicci et al. 1999, Guidetti et al. 2002). More specifi-
cally, in the absence of ‘before’ data, it may be possible
to detect consistent differences between 1 or more
impact locations and several control or reference loca-
tions, although it is generally not possible to attribute
causation to any particular event, historical or ongoing,
for such differences. A detailed description of how to
deal with asymmetrical data and a discussion of the

problems associated with detecting impacts when only
‘after’ data are available are provided by Glasby
(1997).

Non-parametric multivariate procedures have
emerged in recent years, providing useful statistical
methods that have been widely adopted for analyzing
post-impact studies (Smith et al. 1990, Clarke 1993).
An important feature of these methods is that they do
not require the assumption of multivariate normality.
This is a requirement of more traditional multivariate
methods such as multivariate analysis of variance
(MANOVA), but such an assumption is very unlikely to
be met by data consisting of counts of species’ abun-
dances or percentage cover of organisms (Legendre &
Legendre 1998).

Some multivariate extensions to BACI designs were
presented by Kedwards et al. (1999), who described an
approach based on canonical correspondence analysis
(ter Braak 1986) and using randomization tests to
assess significance. Faith et al. (1991) also described a
multivariate BACI analysis based on a gradient model.
Although these approaches may provide some useful
tests, they are either limited through the reduction of
dimensionality required or by their inability to handle
complex experimental designs.

In fact, some of the most widely used non-parametric
multivariate methods (e.g. ANOSIM, Clarke 1993),
which are extremely elegant and useful for many kinds
of ecological applications, do not allow tests of multi-
variate interactions and cannot be used to analyze
complex experimental designs. Asymmetrical beyond-
BACI designs are, nevertheless, very important in
current scientific environmental impact assessment.
These designs generally have many factors (often 3 or
more), including mixtures of fixed and random effects
and hierarchical or interactive spatial and/or temporal
structures (Underwood 1991, 1994).

Recently, new methods have been developed to
investigate multispecies responses in multifactorial
ecological experiments (Legendre & Anderson 1999,
Anderson 2001a, McArdle & Anderson 2001). These
new procedures can be based on any dissimilarity
measure of choice and use permutation methods, and
so do not assume multivariate normality. More particu-
larly, they also allow tests of interactions or of any other
term or contrast in a structured multifactorial design or
model. These are suitable techniques for the analysis
of multivariate data in response to beyond-BACI or
ACI designs, but their application in the assessment of
environmental impacts has not yet been done.

Large and growing human populations in the coastal
areas of all continents exert the most important pres-
sure on coastal ecosystems, particularly through the
disposal of wastes to coastal waters (Koop & Hutchins
1996). Sewage disposal to oceans is generally seen as a
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cost-effective way of dealing with human wastes with-
out causing noticeable problems because of the dilu-
tion of pollutants in seawater. However, much of the
eutrophication occurring worldwide has been related
to increased nitrogen loads attributable to the dis-
charge of sewage (Costanzo et al. 2001). Sewage efflu-
ent, often discharged from outfalls into shallow sub-
tidal habitats, can result in significant effects on coastal
biota (Pearson & Rosenberg 1978, Smith et al. 1999,
Guidetti et al. 2003).

Sewage may cause changes in abundance, biomass
or diversity of benthic organisms (Pearson & Rosen-
berg 1978), bioaccumulation of organic and inorganic
compounds (Phillips 1978) and changes in trophic
interactions among species (Otway et al. 1996). Struc-
tured sampling designs are increasingly used to quan-
tify the effects of sewage on assemblages of rocky
shores, both in intertidal (Archambault et al. 2001) and
subtidal habitats (Roberts et al. 1998).

In this study, we focused on shallow subtidal assem-
blages of sessile organisms exposed to sewage along a
stretch of coast in southern Italy. Results of preliminary
studies in this area showed that the outfall heavily
influenced the pattern of spatial distribution of sessile
macrobenthos (Terlizzi et al. 2002) and rocky reef-
associated fish (Guidetti et al. 2002). Here, we describe
in detail an asymmetrical ACI design, including 1
impact location and a set of 3 control locations, sam-
pled at a hierarchy of spatial scales and at several
times. The purpose of the paper is (1) to illustrate addi-
tional applications of univariate analyses in the assess-
ment of impacts through comparisons of variance
components and (2) to demonstrate the use of recently
developed multivariate methods (i.e. distance-based
permutational MANOVA, Anderson 2001a) in the
analysis of multivariate species data in response to
such a design.

MATERIALS AND METHODS

Study sites and sampling design. The outfall (17° 55’
33’’ N, 40° 11’ 20’’ E) serves about 30000 inhabitants.
The volume discharged ranges from 200 to 600 m3 h–1.
Wastewaters are biologically and chemically treated
before being discharged, although technical problems
often prevent the complete depuration of water.

Sampling was undertaken at a depth of approxi-
mately 5 m at 4 locations: the outfall and 3 reference
(or control) locations (Fig. 1). The putatively impacted
location at the outfall (hereafter indicated as I), was
located within a 400 m radius of the point of discharge.
It was characterized by a wave-exposed calcarenitic
rocky plateau extending from the water surface to
about 10 m depth on fine sand with a gentle–medium

slope. Control locations (hereafter indicated as Cs)
were chosen at random from a set of possible locations
separated by at least 3 km, to provide comparable
habitats to those occurring at the outfall (in terms of
biological assemblages, type and slope of the substrate
and exposure of waves). They were also chosen such
that at least 1 control location occurred on either side
of the outfall. Three sites (approximately 100 to 300 m
apart) were randomly selected at each location and
photographic records were taken at each site. The
photographic equipment consisted of a Nikonos V
underwater camera, 28 mm focal length, close-up
macro system and a couple of SB 105-Nikon electronic
strobes. In order to prevent problems due to loss of
observation units, 13 randomly located quadrats of 16 ×
23 cm (total area 0.4 m2) were photographed at each
site and a random subset of 10 of these were used in
the analyses. Sampling was repeated on 4 randomly
selected occasions, separated by at least 2 mo, over a
period of 15 mo (May and July 2000, February and
August 2001), yielding a total of 480 observation units. 

Analysis of slides and taxonomic discrimination.
The slides were analyzed under a binocular micro-
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Fig. 1. Study area and position of disturbed (I ) and control
(C1, C2 and C3) locations in southern Italy. *: position of sites
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scope by superimposing a transparent subdividing
grid of 24 equally sized squares. For each slide, per-
cent cover values of algae and sessile animals were
estimated by assigning a score to each taxon ranging
from 0 to 4 within each square and adding up these
24 values. Organisms filling less than 1/4 square were
given an arbitrary value of 0.5 (Dethier et al. 1993).
Final values were expressed as percentages. No
attempt was made to count motile and/or fast-moving
animals (e.g. gastropods, ophiuroids and amphipods).

Destructive samples were also collected to aid the
identification of taxa in the laboratory. Prior to collec-
tion, a close-up 80 mm photo was taken of each taxon.
Specialists assisted in the taxonomic identification of
organisms.

Data were collapsed into morphological groups to
obtain sufficiently large values for univariate analyses.
The following groups were considered: encrusting cal-
cified red algae (including Lithophyllum frondosum, L.
incrustans, Mesophyllum alternans and Peyssonnelia
polymorpha), filamentous brown algae (genera Ecto-
carpus and Sphacelaria), filamentous green algae
(genera Bryopsis, Cladophora and Chaetomorpha),
encrusting sponges (Crambe crambe, Phorbas spp. and
Spirastrella cunctatrix) and encrusting bryozoans
(Calpensia nobilis, Reptadeonella violacea, Schizo-
brachiella sanguinea, Schizoporella dunkeri). In addi-
tion, univariate analyses were used to analyze the total
number of taxa per observation unit. Multivariate
analyses were based on a total of 58 taxa. Of these, 39
were identified as species. Due to problems of taxo-
nomic identification from slides, the remaining ones
were included in the analyses at coarser levels of taxo-
nomic resolution. Six were kept at the level of genera,
6 as families (e.g. Gelidiaceae, Serpulidae, Clionidae),
1 as a class (i.e. Hydrozoa) and 6 as morphological
groups (e.g. encrusting calcified red algae, green fila-
mentous algae, brown filamentous algae, etc.).

Univariate analyses. Univariate data were analyzed
using asymmetrical analysis of variance (ANOVA).
The model consisted of 3 factors (Table 1): Time (4 lev-
els, random), Location (random, crossed with Time,
with 1 disturbed and 3 control locations) and Site (3
levels, random, nested in Location), with n = 10 obser-
vations per combination of factor levels. As there was
only 1 location that was purportedly ‘impacted’, being
near the outfall, this is an asymmetrical design (Under-
wood 1991, 1994). In addition, no data were collected
before the establishment of the outfall, thus the design
could perhaps be described as a beyond-ACI design
(see Glasby 1997). The individual terms in the analysis
of variance (ANOVA) model, along with their associ-
ated degrees of freedom and expected values for mean
squares, are given in Table 1. For analysis, the Loca-
tion term, having 4 levels and 3 degrees of freedom,

was partitioned into 2 portions: the 1 degree-of-
freedom contrast of Impact versus Controls (I-vs-Cs)
and the variability among Cs. Note that the I-v-Cs con-
trast must include variability among locations as part of
its expected mean square (Table 1). The Time × Loca-
tion (T × L) mean square was similarly divided into 2
portions: a Time × I-v-Cs (T × I-v-Cs) and a Time × Cs
(T × Cs) interaction, whereas the overall mean squares
of the terms Site(Location) (S[L]) and T × S(L) were par-
titioned into S(I ), S(Cs), T × S(I) and T × S(Cs) terms,
respectively. Finally, the residual variation was di-
vided into 2 parts: the variability for observations
within I (Res I) and variability for observations within
Cs (Res Cs) (Table 1).

Denominators for F ratios were identified following
the logic of beyond-BACI designs (see particularly
Underwood 1992). However, tests of terms that in-
volved sources of variation specific for I or Cs were
constructed using the natural denominator for that
term, not the pooled one (Table 1). For example, the
T × S(I) interaction was tested over Res I rather than
the overall residual variation. Although this procedure
involves a reduced number of degrees of freedom in
the denominator of F, possibly decreasing statistical
power, it takes into account possible differences
between I and Cs in spatial (and temporal) variance.
Using the overall residual variation as denominator
makes the assumption that the variance among
quadrats at I and Cs is the same, which may not be the
case if an impact affects small-scale spatial patterns.

In order to test hypotheses concerning effects on
variances, rather than mean effects, variance compo-
nents were obtained using restricted maximum likeli-
hood (REML) estimators (Searle et al. 1992). REML was
used rather than the usual ANOVA estimators to avoid
the potential problem of obtaining negative estimates.
This procedure was used to estimate spatial variances
at the scale of quadrats and sites, in addition to the T ×
S(L) component, separately for I and Cs.

Linear combinations of mean squares, such as are
used to estimate variance components, do not always
have tractable known statistical distributions for rele-
vant null hypotheses (Searle et al. 1992). However,
obtaining confidence intervals for individual variance
components is important for hypothesis testing in the
context of impact assessment. More particularly, we
may wish to compare variation at the impact location
versus that at the controls at more than 1 spatial scale.
Various methods have been proposed to obtain ap-
proximate confidence intervals (e.g. Searle et al. 1992,
Neter et al. 1996), but there is no general consensus on
their validity. Here, we took an alternative approach
and obtained confidence intervals for individual
variance components using bootstrapping (Efron &
Tibshirani 1993). Bootstrap confidence intervals were
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also obtained for the difference between the variance
components for I and Cs at the scale of residuals, at the
scale of sites, and for the T × S(L) component, pro-
viding a basis for direct comparisons. Data for I and Cs
were bootstrapped separately. For estimating error
variances, individual observations were sampled with
replacement within each combination of Time × Site
(Location), whereas for the other terms (i.e. Sites and
Time × Site interactions), bootstrap data were obtained
by sampling randomly and with replacement a Time
and then a Site, keeping the individual observations

within a cell together (Davison & Hinkley 1997,
p. 100–102). Variance components were estimated
using REML estimators for each of 5000 bootstrap
samples; bias-corrected confidence intervals were
obtained using the 0.025 and 0.975 percentiles of the
bootstrap distributions (Efron & Tibshirani 1993, Manly
1997). Confidence intervals that did not include zero
provided evidence of differences between I and Cs. All
bootstrap confidence intervals were calculated using
a special-purpose computer program (Bootvar.exe)
written in FORTRAN by M.J.A.
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Source of variation df Expected mean square 

Time = T a–1 σ2
e + nσ2

T × S(L) + cnσ2
T × L + bcnσ2

T

Location = L b–1 σ2
e + nσ2

T × S(L) + cnσ2
T × L+ anσ2

S(L) + acnσ2
L

kI-v-Cs 1 σ2
e– I + nσ2

T × S(I) + cnσ2
T × I-v-Cs + anσ2

S(I)+ acnσ2
L + acnβ2

I-v-Cs
jCs b–2 σ2

e– Cs + nσ2
T × S(Cs) + cnσ2

T × Cs + anσ2
S(Cs) + acnσ2

Cs
iSite(L) = S(L) b(c–1) σ2

e + nσ2
T × S(L) + anσ2

S(L)
hS(I) c–1 σ2

e– I + nσ2
T × S(I) + anσ2

S(I)
gS(Cs) (b–1)(c–1) σ2

e– Cs + nσ2
T × S(Cs) + anσ2

S(Cs)
fT × L (a–1)(b–1) σ2

e + nσ2
T × S(L) + cnσ2

T × L
eT × I-v-Cs (a–1) σ2

e– I + nσ2
T × S(I) + cnσ2

T × L + cnσ2
T x I-v-Cs

dT × Cs (a–1)(b–2) σ2
e– Cs + nσ2

T × S(Cs) + cnσ2
T × Cs

cT × S(L) (a–1)b(c–1) σ2
e + nσ2

T × S(L)
bT × S(I) (a–1)(c–1) σ2

e– I + nσ2
T × S(I)

bT × S(Cs) (a–1)(b–1)(c–1) σ2
e– Cs + nσ2

T × S(Cs)

Residual abc(n–1) σ2
e

aRes I ac(n–1) σ2
e– I

aRes Cs ac(b–1)(n–1) σ2
e– Cs

Total abcn–1

aA distinction is made between σ2
e–I and σ2

e–Cs to emphasize that impacts may affect measures of spatial variance at the scale
of replicate quadrats. This proposition is tested using a bootstrapping procedure (similar tests were done to compare σ2

T × S(I)

with σ2
T × S(Cs) and σ2

S(I) with σ2
S(Cs), see ‘Materials and methods’). However, all the analyses on mean effects assume no differ-

ence between σ2
e–I and σ2

e–Cs, so that both components estimate the common within-group variance σ2
e

bThese tests are constructed using the natural denominator (i.e. Res I for T × S(I) and Res Cs for T × S(Cs)), not the pooled one
(the overall residual)

cTested over the Residual term
dTested over T × S(Cs)
eTested over the Residual if both T × Cs and T × S(L) can be eliminated from the model (not significant at α = 0.25, Winer et al.
1991, Underwood 1997); tested over T × S(L) if only T × Cs can be eliminated; tested over T × Cs otherwise. These tests
assume equivalence among σ2

T × S(I), σ2
T × S(Cs) and σ2

T × S(L) and between σ2
T × L and σ2

T × Cs (see also Glasby 1997, p. 453)
fTested over T × S(L)
gTested over T × S(Cs)
hTested over T × S(I)
iTested over T × S(L)
jTested over T × Cs if S(Cs) can be eliminated; tested over S(Cs) if T × Cs can be eliminated; tested over T × S(Cs) if both T ×
Cs and S(Cs) can be eliminated from the model
kThis test is done over the Residual if T × S(L), T × L, S(L) and Cs can be eliminated from the model; T × S(L) is used as the
denominator if T × L, S(L) and Cs can be eliminated, but not T × S(L); the test is done over S(L) if T × L and Cs can be elimi-
nated, but not S(L); Cs is used as the denominator if it is not possible to eliminate this term from the model. These tests
assume equivalence among σ2

T × S(I), σ2
T × S(Cs) and σ2

T × S(L), among σ2
T × I-v-Cs, σ2

T × Cs and σ2
T × L and among σ2

S(I), σ2
S(Cs) and σ2

S(L).
They also assume equivalence between σ2

L and σ2
Cs. Note that β2

I-v-Cs is the only component corresponding to a fixed effect
in the entire design. More particularly, β2

I-v-Cs is used here to denote the squared effect of the contrast vector which contrasts
location I with the average of the Cs

Table 1. Asymmetrical analysis of variance comparing a disturbed location (I ) with control locations (Cs); in this study there were
a = 4 times of sampling, b = 4 locations (the disturbed location and 3 controls), c = 3 sites in each location and n = 10 replicate 

quadrats in each site
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Cochran’s C-test (Underwood 1997) was used to
check the assumption of homogeneity of variances
prior to testing hypotheses concerning mean differ-
ences. This was not a requirement for obtaining esti-
mates of variance components. In some cases, data
were ln(x + 1)-transformed to remove heterogeneous
variances. When there was no suitable transformation,
analyses were performed on untransformed data.
ANOVA, in fact, is considered robust to departures
from the assumption of homogeneous variances, par-
ticularly with balanced designs and when there are
many independent estimates of sample variance.
ANOVAs were performed using GMAV 5 software
(University of Sydney, Australia).

Multivariate analyses. Distance-based premu-
tational multivariable analysis of variance (PER-
MANOVA, Anderson 2001a) was used to analyze the
multivariate assemblage data for the full multi-factor
design, including all contrasts and partitions involving
impact and control locations. This was achieved by
explicitly treating ANOVA as a linear model in a dis-
tance-based redundancy analysis (McArdle & Ander-
son 2001). Each term in the analysis was coded as a
design matrix and tested individually with the appro-
priate denominator and relevant permutable units
using the computer program DISTLM.exe (Anderson
2004). The analyses tested the same hypotheses
described above for univariate data but in a multivari-
ate context. All multivariate analyses were based on
Bray-Curtis dissimilarities (Bray & Curtis 1957) on
untransformed data (58 taxa) and each term in the
analysis was tested using 4999 random permutations of
the appropriate units (Anderson 2001b, Anderson & ter
Braak 2003). For example, a test of the term T × L
requires permutation of cells corresponding to the 48
T × S(L) units (i.e. keeping observations within cells
together as a unit, see ‘Results’). For some terms in the
analysis, there were not enough permutable units to
get a reasonable test by permutation, so a p-value was
obtained using a Monte Carlo random sample from the
asymptotic permutation distribution (Anderson &
Robinson 2003, see Eq. 4 therein).

To visualize multivariate patterns, non-metric multi-
dimensional scaling (nMDS) ordinations were done
(Kruskal & Wish 1978) on the basis of a Bray-Curtis dis-
similarity matrix calculated from untransformed data.
As there were too many observation points to view in a
single ordination, we examined centroids of the 48 T ×
S(L) cells. We also examined centroids of the 16 T × L
cells. The centroids in multivariate space defined by
the Bray-Curtis measure are not the same as the arith-
metic averages of the original variables (Anderson
2001a). Thus, to obtain the plots, we calculated princi-
pal coordinates (Gower 1966) from the full Bray-Curtis
dissimilarity matrix among all pairs of the 480 observa-

tions. This places the observations into a Euclidean
framework, but preserves the Bray-Curtis measure:
that is, the Euclidean distance between any pair of ob-
servations using these principal coordinates is equiva-
lent to the Bray-Curtis dissimilarity between those 2
points using the original variables. Centroids, as arith-
metic averages, were therefore calculated using these
principal coordinates. The Euclidean distance between
each pair of centroids was then calculated and used as
the input distance matrix for the nMDS algorithm.

In light of the precautionary principle (Gray 1990,
Fairweather 1991) and the relatively small number of
degrees of freedom for some of the tests, we decided to
use an a priori significance level of α = 0.10 as a deci-
sion criterion for interpreting statistical results in both
multivariate and univariate analyses.

The SIMPER procedure (Clarke 1993) was used to
identify, at each time of sampling, the percentage con-
tribution (⎯δi%) that each species (or taxon) made to the
measures of the Bray-Curtis dissimilarity (⎯δi) between
the average of the Cs versus I. This analysis allowed
identification of the species (or taxa) that were most
important in differentiating I from the Cs. Species (or
taxa) were selected as ‘important’ if they exceeded an
arbitrarily chosen threshold value of percent dissimi-
larity ≥3%. 

The average contribution⎯δι of individual taxa to the
dissimilarity between 2 groups (I vs Cs, in our case) is
calculated between all pairs of inter-group samples.
This value (⎯δi) can either suggest a consistent indicator
taxon or not, depending on how often the taxon con-
tributed to the inter-comparison of all samples in the 2
groups (Clarke 1993). The ratio ⎯δi/SD (δi) was, there-
fore, also calculated for each species/taxon identified
as ‘important’ by SIMPER. A large value of⎯δi/SD (δi)
(i.e. exceeding 1) indicated that the contribution of the
given taxon to the average dissimilarity⎯δi was rela-
tively consistent across the majority of samples in the
comparison of I versus Cs. 

RESULTS

Multivariate analyses

Multivariate analyses provided evidence for stat-
istically significant impacts of the outfall on multivari-
ate assemblages (Table 2, Fig. 2). There was a signifi-
cant T × I-v-Cs interaction term for the multivariate
data (at α = 0.1, Table 1), indicating that the variation
through time at the impact location differed signifi-
cantly from the temporal changes that occurred, on
average, at the control locations. This was also evident
in the nMDS plot of the T × L centroids (Fig. 2a), where
the direction of change through time was different for
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the impact location compared to the controls. In addi-
tion, small-scale temporal and spatial variability was
evident, as there was significant multivariate variabil-
ity through time from site to site at the impact and at
the control locations (i.e. significant T × S[I] and T ×
S[Cs] terms in Table 2).

The presence of a significant T × I-v-Cs interaction
indicated that the difference between assemblages at I
versus those at Cs differed at different times. A change
in the difference between I and Cs could be due to a
difference in either the direction of the multivariate
effect or its size at different times. Separate PERM-
ANOVAs were done, investigating the full spatial
design separately at each time (Table 3). These analy-
ses showed that the site-to-site variability within lo-
cations remained highly significant at all times of
sampling (p < 0.001) and that control locations differed
significantly from one another for Times 1, 2 and 3 (p <
0.03), but not for Time 4 (p > 0.20, Table 3). Of greatest
interest was the I-v-Cs contrast, which was statistically
significant at each of Times 1, 3 and 4 (p < 0.07), but not
at Time 2 (p > 0.13).

The average Bray-Curtis dissimilarity between
assemblages at the impact location and those at any of
the control locations was larger than that between
assemblages from different control locations at all
times except Time 2 (Table 3). At Time 2, the average
dissimilarity between assemblages at Control Location
2 and the impact location was smaller than that
between Control Locations 1 and 3. Thus, the lack of a
significant I-v-Cs contrast at Time 2 was apparently
due to greater among-control variation, causing a sig-
nificant T × I-v-Cs interaction.
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Source of variation df SS MS F p MSdenom Permutable units

Time = T 3 55428.79 18476.26
Location = L 3 262508.49 87502.83

I-v-Cs 1 157753.90 157753.90
Cs 2 104754.58 52377.29

Site(L) = S(L) 8 66754.37 8344.30
S(I) 2 31621.70 15810.85
S(Cs) 6 35132.67 5855.45

T × L 9 68405.96 7600.66
T × I-v-Cs 3 34140.45 11380.15 1.4 0.0760 T × S(L) 48 T × S(L) cells
T × Cs 6 34265.51 5710.92 0.7 0.9276 T × S(Cs) 36 T × S(Cs) cells

T × S(L) 24 189754.88 7906.45 5.8 0.0002 Residual 480 raw data units
T × S(I) 6 33554.73 5592.46 3.5 0.0002 Res I 120 raw data units
T × S(Cs) 18 156200.15 8677.79 6.7 0.0002 Res Cs 360 raw data units

Residual 432 590008.31 1365.76
Res I 108 171169.26 1584.90
Res Cs 324 418839.04 1292.71

Total 479 1232860.78

Table 2. PERMANOVA based on the Bray-Curtis dissimilarities (no transformation) of the multivariate data (58 taxa). Each test
was done using 4999 permutations. p-values given in italics were obtained using 4999 Monte Carlo samples from the asymptotic
permutation distribution. The term used for the denominator mean square in each case is given in the column MSdenom. Terms

already involved in significant higher-order interactions were not analyzed

Fig. 2. Non-metric multidimensional scaling ordinations
(nMDS plots) on the basis of the Bray-Curtis dissimilarity
measure of (a) centroids of each location at each time of sam-
pling, with the time sequence given as numbers on the plot
and (b) centroids of the n = 10 observations for each site at
each time of sampling. Centroids were calculated using prin-

cipal coordinates (see text for further details)
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Patterns on the nMDS plots (Fig. 2) suggested that,
although the magnitude of the difference between the
impact and control locations might differ at different
times of sampling (as confirmed by the separate analy-
ses shown in Table 3), there may nevertheless be con-
sistency in the direction of this difference. By this, we
mean that the assemblage composition at the impact
site, although temporally variable, may still be charac-
terizably distinct from the controls. That is, the symbols
corresponding to the impact location were all located in
the upper right diagonal of the diagram, while the sym-
bols corresponding to control locations were cleanly
separated from these and located in the lower left diag-
onal, regardless of the time of sampling (Fig. 2b).

There were 14 taxa identified by SIMPER as being
important in differentiating assemblages located at Cs
from those at I, at each time of sampling (Table 4). Red
algae of the family of Gelidiaceae (grouping Ptero-
cladiella sp. and Gelidium sp.) were present almost
exclusively at I and made a strong contribution
towards differences between Cs and I, at all times of
sampling. The brown alga Colpomenia sinuosa was
also exclusively present at I. However, due to its low
abundance, its percentage contribution to the dissimi-
larity between Cs and I reached the threshold value of
3% only at the first time of sampling. Encrusting calci-
fied red algae and the encrusting sponge Crambe
crambe also made important contributions to discrimi-
nate between Cs and I at all sampling occasions.
Among algae, Dictyota dichotoma, Amphiroa spp.,
Padina pavonica, Corallina elongata and the groups of
filamentous brown and green algae, were also impor-
tant in differentiating between Cs and I. The relative
contribution of these taxa, however, changed from
time to time. The same pattern was recorded for the

sponges of the family of Clionidae and the species
Chondrosia reniformis and Chondrilla nucula, the bor-
ing bivalve Gastrochaena dubia and calcareous tube-
worms of the family of Serpulidae (Table 4).

Univariate analyses

The analysis on mean number of taxa revealed sig-
nificant differences among Cs and a significant T ×
S(L) interaction, indicating large temporal and spatial
variation in the response variable unrelated to the
presence of the outfall (Table 5, Fig. 3a). The analysis
on variance components revealed large differences
between I and Cs, with larger variability among repli-
cate quadrats at the disturbed location (Table 6). This
analysis indicated that Res I and Res Cs were not
equivalent, suggesting that further tests of differences
among means should be interpreted with caution (see
Table 1). 

Comparisons of variance components for encrusting
calcified red algae indicated no significant difference
between I and Cs in measures of spatial variance at the
scale of replicate quadrats and of sites, nor for the
interaction between Time and Site (Table 6). There
was also no evidence of impact on the mean cover of
these algae (Table 5, Fig. 3b). Significant differences
occurred among Cs, highlighting large natural vari-
ability at this spatial scale (Table 5). There was also
evidence of temporal changes in mean abundance that
varied across sites (significant T × S[L] interaction in
Table 5). 

The analysis on variance components for filamentous
brown algae indicated no difference between I and Cs
in any of the comparisons (Table 6). In contrast, mean
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Source of df Time 1 Time 2 Time 3 Time 4
variation MS F p MS F p MS F p MS F p MSdenom

L 3 2.287 3.877 0.0006 3.127 4.439 0.0010 3.444 3.744 0.0004 2.172 2.190 0.0072 S(L)
I-v-Cs 1 3.750 2.409 0.0614 4.587 1.914 0.1324 7.044 4.286 0.0038 3.809 2.812 0.0394 Cs
Cs 2 1.556 2.608 0.0052 2.397 2.896 0.0120 1.643 2.033 0.0238 1.354 1.416 0.2086 S(L)

S(L) 8 0.590 3.964 0.0002 0.704 5.511 0.0002 0.920 6.476 0.0002 0.992 7.774 0.0002 Residual
Residual 108 0.149 0.128 0.142 0.128

Time 1 Time 2 Time 3 Time 4
C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

C2 0.586 C2 0.634 C2 0.639 C2 0.554
C3 0.686 0.642 C3 0.736 0.670 C3 0.661 0.708 C3 0.659 0.658
I 0.740 0.740 0.731 I 0.739 0.714 0.793 I 0.825 0.856 0.871 I 0.692 0.740 0.808

Table 3. Separate PERMANOVA analyses investigating the difference between impact versus control locations separately at
each time based on the Bray-Curtis dissimilarity for 58 taxa. Each test was done using 4999 permutations of appropriate units, as
shown. p-values given in italics were obtained using 4999 Monte Carlo samples from the asymptotic permutation distribution.
The term used for the denominator mean square in each case is given in column MSdenom. Also given separately for each time 

are the average Bray-Curtis dissimilarities between assemblages from different locations
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Taxon Time 1 Time 2 Time 3 Time 4
Average abundance Average abundance Average abundance Average abundance

Cs I ⎯δi ⎯δi% Cs I ⎯δi ⎯δi% Cs I ⎯δi ⎯δi% Cs I δi ⎯δi%

Gelidiaceae 0.0 17.1 13.3 17.8 1.0* 0.1 27.4 22.7 30.2 1.3* 0.0 19.2 17.9 21.2 1.5* 0.0 19.1 15.9 21.3 0.9
Encrusting 20.0 13.3 9.4 12.6 1.3* 13.3 9.7 7.4 9.8 1.2* 14.6 7.0 9.8 11.6 1.4* 12.2 15.4 10.4 13.9 1.3*
calcified 
red algae

Filamentous 3.5 11.5 9.1 12.2 1.1* 9.2 5.8 7.3 9.7 1.0* 2.6 0.0 2.4 2.9 0.7 4.4 3.2 3.5 4.7 1.0*
brown algae

Clionidae 7.5 0.9 4.4 5.9 0.5 4.6 3.1 3.4 4.5 1.1* 2.0 1.2 2.1 2.5 0.9 2.6 1.5 2.2 2.9 1.4*

Chondrosia 1.2 4.7 4.1 5.5 0.6 0.6 3.7 3.3 4.4 0.4 0.3 0.0 0.3 0.4 0.3 0.3 2.8 2.4 3.2 0.5
reniformis

Filamentous 4.7 1.5 3.9 5.2 0.8 2.9 0.2 2.4 3.2 0.7 1.7 1.7 2.3 2.8 0.8 2.5 1.2 2.3 3.0 1.0*
green algae

Crambe crambe 2.8 2.5 3.4 4.6 0.6 2.4 1.8 2.8 3.8 0.7 3.7 1.2 3.8 4.5 0.7 2.5 1.1 2.6 3.5 0.7

Dictyota 1.9 3.0 3.4 4.6 0.5 1.6 0.2 1.3 1.7 0.4 0.9 1.9 2.2 2.6 0.8 1.3 1.5 1.7 2.3 0.8
dichotoma

Colpomenia 0.0 2.8 2.4 3.2 0.5 0.0 1.2 1.0 1.3 0.3 0.0 1.3 1.3 1.5 0.4 0.0 0.1 0.1 0.1 0.2
sinuosa

Serpulidae 0.5 2.1 1.7 2.3 0.7 0.4 1.0 0.9 1.2 0.9 0.7 3.1 3.0 3.6 0.7 1.2 1.7 1.5 2.0 1.0*

Gastrochaena 0.1 1.7 1.4 1.9 0.7 0.0 0.3 0.3 0.4 0.3 0.0 7.2 6.9 8.2 0.6 0.1 1.1 1.0 1.5 0.6
dubia

Amphiroa sp. 1.3 0.0 1.0 1.4 0.4 1.2 0.3 1.1 1.5 0.6 1.5 0.5 1.5 1.8 0.7 2.2 2.5 3.4 4.6 0.7

δ
δ
i

iSD( )
δ

δ
i

iSD( )

δ
δ
i

iSD( )
δ

δ
i

iSD( )

Table 4. Breakdown of average Bray-Curtis dissimilarity (untransformed data) values between Cs and I into contributions from
the most important taxa (⎯δi). At each of the 4 times of sampling, values exceeding an arbitrarily chosen threshold value of  ≥ 3%
are in bold. High values of the ratio⎯δi/SD(δi) (indicated by asterisks) denote that the contribution of the species (or taxon) to the 

dissimilarity between Cs and I is reasonably consistent across all pairs of samples in the 2 groups

Source of df Mean no. Encrusting  Filamentous Filamentous Encrusting Encrusting
variation of taxa calcified brown algae green algae sponges bryozoans

red algae
MS F MS F MS F MS F MS F MS F

Time = T 3 1.30 5.19 23.31 198.67 32.22 18.52
Location = L 3 1.85 25.21 13.06 104.35 377.51 109.30
I-v-Cs 1 0.00 0.0 19.92 0.7 0.87 279.13 3.2 93.01 0.2 84.10 0.7
Cs 2 2.78 14.1*** 27.92 16.1*** 19.16 3.4* 16.96 0.5 519.76 5.0 121.90 15.3***

Site(L) = S(L) 8 0.11 2.40 3.41 88.48 89.68 5.44
S(I) 2 0.17 1.3 8.21 7.67 1.50 4.4 44.34 8.8* 0.71
S(Cs) 6 0.09 0.46 1.99 117.47 104.80 7.02

T × L 9 0.09 0.5 1.52 0.8 9.80 2.2* 35.36 0.6 45.62 0.9 9.93 1.6
T × I-v-Cs 3 0.13 0.7 3.35 1.8 17.04 3.8* 32.00 0.5 18.62 0.4 17.61 2.9
T × Cs 6 0.07 0.4 0.61 0.4 6.17 1.1 37.04 0.5 59.12 0.8 9.77 1.2

T × S(L) 24 0.18 2.7*** 1.83 4.6*** 4.54 8.9*** 61.11 4.5*** 53.74 2.5*** 6.09 1.8**
T × S(I) 6 0.13 1.2 2.12 2.6* 1.24 2.7** 0.34 0.2 5.06 0.4 0.46 3.8**
T × S(Cs) 18 0.20 3.7*** 1.73 6.8*** 5.64 10.7*** 81.36 4.7*** 69.97 2.8*** 7.97 1.8*

Residual 432 0.07 0.40 0.51 13.63 21.85 3.30
Res I 108 0.11 0.81 0.47 1.98 12.32 0.12
Res Cs 324 0.05 0.26 0.53 17.51 25.02 4.36

Cochran test C = 0.07, C = 0.07, C = 0.07, C = 0.18, C = 0.17, C = 0.21, 
p > 0.05 p > 0.05 p > 0.05 p < 0.01 p < 0.01 p < 0.01

Transformation ln(x + 1) ln(x + 1) ln(x + 1) None None None

Table 5. Summary of asymmetrical ANOVA on mean number of taxa, and on percentage cover of widespread and abundant taxa. 
Terms already involved in significant higher-order interactions were not analyzed. *p < 0.1, **p <0.01, ***p < 0.001
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percentage cover differed between I and Cs inconsis-
tently with time, providing evidence in support of an
effect of the outfall (T × I-v-Cs is significant in Table 5).
This pattern was largely driven by the disappearance
of these algae at I at Time 3 (Fig. 3c). Time by Site
interactions were significant at Cs and at I (Table 5).

Comparisons of variance components for filamen-
tous green algae revealed significantly more variation
at Cs than at I in terms of spatial heterogeneity at the
scale of quadrats and as temporal variability in among-
site differences (Table 6). Although these patterns in-
dicate that analyses on mean values should be viewed
with caution, there was greater average cover of fila-
mentous green algae at Cs compared to I (Fig. 3d).

Temporal changes in among-site differences were
larger at Cs compared to I for encrusting sponges, as
indicated by the analysis on variance components
(Table 6). In contrast, there was no evidence for any
differences between I and Cs in mean cover of these
animals (Fig. 3e, Table 5).

Encrusting bryozoans were much more variable at
the scale of replicate quadrats at Cs compared to I, as

indicated by the comparison of variance components
(Table 6). These organisms were also more abundant
on average at Cs compared to I (Fig. 3f). Time by Site
interactions were significant at Cs and at I (Table 5)
and there was also significantly greater Time by Site
variability at Cs compared to I (Table 6).

DISCUSSION

This study detected significant differences between
assemblages at a location exposed to sewage and those
at control locations. Multivariate analyses indicated
that differences between I and Cs were significantly
greater than the variation among control locations in
3 out of the 4 times sampled. In addition, the direction
of the difference (i.e. the specific taxa that character-
ized differences) was similar at all times.

Several taxa characterized the differences found
between disturbed and control locations, with some
algae (e.g. Colpomenia sinuosa, Gelidium sp. and
Pterocladiella sp.) occurring uniquely at the disturbed
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Fig. 3. Mean (±SE, n = 30) total number of taxa (a) and % cover for widespread and abundant taxa at I and Cs (C1, C2 and C3) at
each of the 4 sampling times (T1, T2, T3, T4); (b) encrusting calcified red algae; (c) filamentous brown algae; (d) filamentous 

green algae; (e) encrusting sponges; (f) encrusting bryozoans
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location. Univariate analyses indicated a significant
Time × I-v-Cs interaction for filamentous brown
algae, whereas a trend for an overall difference
between I and Cs was evident for filamentous green
algae. The analysis on variance components indicated
significantly larger spatial variation at the scale of
quadrats at I compared to Cs for number of taxa,
whereas the opposite pattern occurred for filamen-
tous green algae and bryozoans. In addition, Space ×
Time interactivity at the scale of sites was signifi-
cantly larger at Cs compared to I for filamentous
green algae and encrusting sponges. In summary,
ongoing differences between I and Cs were, there-
fore, characterized by the location near the outfall (I)
having greater variation in the number of taxa at
small spatial scales, accompanied by decreased abun-
dance and variability of green filamentous algae,

encrusting sponges and bryozoans compared to the
control locations (Cs). 

A common pattern in the data was the significant
amount of variability among controls, a finding that
confirms the importance of selecting multiple controls in
designing experiments aimed at detecting ecological
impacts of human activities (Underwood 1994, Glasby &
Underwood 1998). It is also worth noting that in a
preliminary report on the effect of the same outfall
(Terlizzi et al. 2002), lack of temporal replication pre-
vented the detection of differences between I and Cs for
some of the analyzed variables. This stresses the
importance of obtaining proper temporal replication
before drawing inferences about potential impacts. Sev-
eral findings from this study have a number of important
implications for future multivariate and univariate analy-
ses in the assessment of environmental impacts. 
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Response variable Source of variation Variance component Mean difference CI(low) CI(high)

No. of taxa Res I 9.4407 4.3068* 2.6808 6.9167
Res Cs 4.6469
T × S(I) 0.2034 –0.6947 –2.1893 0.7456
T × S(Cs) 1.0139
S(I) 0.0000 0.0040 –0.5472 0.6000
S(Cs) 0.0000

Encrusting calcified Res I 70.2468 17.9842 –2.0427 46.2070
red algae Res Cs 50.1728

T × S(I) 15.6545 3.0536 –29.8014 43.5116
T × S(Cs) 17.2066
S(I) 7.2504 –0.0191 –5.45610 20.9919
S(Cs) 0.0000

Filamentous Res I 28.0769 3.3316 –8.6279 14.6559
brown algae Res Cs 24.4441

T × S(I) 4.9287 –13.9132 –73.8604 3.1437
T × S(Cs) 30.0393
S(I) 4.6403 –0.0673 –4.6684 13.4638
S(Cs) 0.0000

Filamentous Res I 1.8849 –13.9479* –22.1365 –9.1910
green algae Res Cs 17.5131

T × S(I) 0.0000 –4.3794* –16.4580 –1.5582
T × S(Cs) 6.3852

Encrusting Res I 11.9374 –10.3896 –24.7663 0.3464
sponges Res Cs 25.0218

T × S(I) 0.0000 –3.0151* –10.8957 –0.5094
T × S(Cs) 4.4947

Encrusting Res I 0.1190 –3.8172* –5.8486 –2.7436
bryozoans Res Cs 4.3627

T × S(I ) 0.0337 –0.0604 –0.8808 0.1867
T × S(Cs) 0.3366
S(I) 0.0064 –0.0011 –0.1935 0.1952
S(Cs) 0.0000

Table 6. REML estimators of variance components and bootstrap differences between disturbed and reference locations [Res-I –
Res-Cs, T × S(I) – T × S(Cs) and S(I) – S(Cs)]. CI(low) and CI(high) are the 0.025 and 0.975 percentiles of the bootstrap distributions
of the differences, respectively. Mean differences in variance components that were significantly different from zero (α = 0.05)
are indicated with an asterisk. Differences at the scale of site were not examined if T × S(I) and T × S(Cs) already differed

significantly
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Multivariate analyses 

Clarke & Green (1988) and Clarke (1993) provided a
non-parametric multivariate permutation test for dif-
ferences among a priori groups called analysis of simi-
larities (ANOSIM). As evidenced by the context in
which the test was presented, it has a special utility,
more particularly, in the comparison of polluted versus
control sites in environmental impact assessment
(Clarke & Green 1988, Warwick et al. 1990, Clarke
1993). The special strengths of this method are numer-
ous. First, it is very flexible: it can be based on any dis-
similarity measure relevant to the ecological problem
and data at hand. Second, it is robust, as it does not rely
on any particular assumptions regarding the distribu-
tion of original variables, unlike traditional multivari-
ate test statistics. Third, it is truly non-parametric: as
the test statistic is calculated from ranks of dissimilari-
ties, it does not include estimation of any parameters
from linear or non-linear models, and thus mirrors the
robust utility of non-metric multi-dimensional scaling
as an ordination method. Fourth, it is elegant, under-
standable, interpretable and easy to communicate
because of its simplicity.

Despite these strengths, Clarke (1993) admits that
‘many impact studies are not confined to 1-way lay-
outs; some recommended designs mix both spatial and
temporal components and have hierarchies of spatial
sampling… these designs can become very complex…
It is a major challenge to even begin to translate such
structures into the present distribution-free multivari-
ate context of the present paper, and one that could
only ever be partially successful’ (p 134).

It is clear that measures of patterns in whole assem-
blages of species can provide the most useful informa-
tion for interpreting the consequences of pollution to
an ecological system (Underwood & Peterson 1988)
and are also generally more sensitive to environmental
changes than individual indicator species variables or
other univariate indices, such as the Shannon diversity
index (Clarke 1993). Although it would be appealing to
simply use ANOSIM for tests of environmental impacts
on multivariate assemblages, potential problems of
erroneous statistical inferences obtained from using
simple experimental designs for complex problems
(e.g. due to the lack of measures of variation at appro-
priate spatial scales or pseudo replication, etc., see
Stewart-Oaten et al. 1986 and Underwood 1991, 1992)
must logically exist for multivariate tests, just as they
do for univariate ones. This highlights the need for a
multivariate similarity-based framework for testing
hypotheses that can also accommodate complex exper-
imental designs.

PERMANOVA (McArdle & Anderson 2001, Anderson
2001a) provides a method whereby multivariate data can

be analyzed in response to complex experimental
designs. While numerous studies have used this method
to examine general ecological hypotheses, this is its first
direct use, to our knowledge, in the context of environ-
mental impact assessment. In addition, the linear con-
trast of I versus Cs, so important in many beyond-BACI
designs, could be tested explicitly for the multivariate
data by setting up an appropriate test criterion (as artic-
ulated by McArdle & Anderson 2001) and an appropriate
permutation method (as articulated by Anderson & ter
Braak 2003). Furthermore, the fact that the asymptotic
permutation distribution of these multivariate test statis-
tics can be determined for any individual data set (see
Anderson & Robinson 2003 for details), means that one
can obtain p-values for tests of hypotheses even when
the possible number of permutations is too small to ob-
tain a meaningful test.

Applying a complex linear model to a distance
matrix does not come without some consequences,
however. Of the 4 desirable qualities identified above
for ANOSIM, PERMANOVA retains, at least, the first 2
of these. It retains the flexibility that any dissimilarity
measure can be used. It is also a distribution-free
method in that estimation and inference is based on a
statistic whose distribution does not depend in any way
on complete specification of the distributions of the
species variables (Gibbons 1982, Noether 1985). One
might argue, however, that it is ‘semi-parametric’
(rather than non-parametric) in the sense that the
partitioning implicitly applies a linear model (thus,
involving some parameterization) to the distances.
Once chosen, the dissimilarity measure is essentially
driving the analysis (there is no ranking of distances,
as with ANOSIM) and so one must take special care to
ensure that the measure chosen appropriately reflects
changes in the structure of assemblages that are bio-
logically and/or ecologically meaningful. The point is,
PERMANOVA is non-parametric in the sense of being
‘distribution-free’, but it does not avoid all kinds of
parameterization in the sense that it does specify a lin-
ear model on distances. We believe, however, that this
is a reasonable thing to do provided the distance or dis-
similarity measure reflects the properties of changes in
the structure of assemblages that are of greatest inter-
est to the researcher.

A further consequence of using the PERMANOVA
approach is that it may be difficult to unravel or inter-
pret the meaning of significant multivariate interaction
terms. First of all, a dissimilarity measure between 2
assemblages is not a uniquely interpretable number in
an ecological sense. For example, a Bray-Curtis dis-
similarity of 60% between 2 observation units may
mean a difference in relative abundances for certain
taxa, while it may mean a difference in relative fre-
quencies of taxa between 2 other observation units.
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Thus, a dissimilarity measure suffers from some of the
same problems of ‘non-uniqueness’ as those observed
for community measures of diversity or evenness
(Clarke 1993). Multivariate dissimilarity measures do,
however, take into account the identity of species in
determining both size and direction of distances,
which is a major distinction from other community
indices. If a difference is found between assemblages,
it should be interpretable in some way by reference to
the chosen dissimilarity measure.

Interactions in multivariate data can be due to dif-
ferences in the size or the direction of the effects of
one factor across levels of another factor. With the
PERMANOVA approach, these differences in size or
direction are defined by the dissimilarity measure
(and therefore the space) chosen for the analysis. This
is similar to the interpretation of univariate interac-
tions, with the important difference being that the
directionality issue is multidimensional, rather than
being simply an increase or a decrease along a single
dimension.

To unravel and interpret the meaning of the signifi-
cant multivariate interaction in the present study, it
was necessary to examine: (1) the average values of
the Bray-Curtis dissimilarity measure between impact
and control assemblages and among controls at differ-
ent times, to examine sizes of effects based on this
measure; (2) patterns in the ordination diagram show-
ing both factors, to visually evaluate possible differ-
ences in the size or direction of effects at different
times and (3) results of SIMPER and other univariate
analyses, to further characterize the nature of effects at
each time in terms of the biota. Although not needed in
the present investigation, other multivariate methods,
including canonical techniques such as generalized
discriminant analysis based on distances (Anderson &
Robinson 2003, Anderson & Willis 2003), might also be
used to advantage to investigate specific issues of dif-
ferences in directionality among levels of factors. Such
approaches may be particularly helpful when the rea-
sons for a significant interaction are not readily visually
apparent from unconstrained ordination plots, such as
nMDS, or if such plots have high stress values, making
them difficult to interpret.

The successful use of PERMANOVA in the analysis
of multi-species responses to sewage in the present
study bodes well for future monitoring and impact
studies. The results obtained were clear, interpretable
and were consistent with patterns seen in the multi-
variate ordination plots. In addition, simplification of
complex spatio-temporal interactions using sums or
averages, which can also introduce problems of
pseudo-replication, did not need to be done in order
to successfully analyze these multivariate data simul-
taneously using PERMANOVA. As a result, the poten-

tial basis for statistical inferences and the spatial scale
of effects using the full experimental design was not
compromised, but remained intact, as for the analo-
gous univariate analyses.

Univariate analyses

Univariate analyses indicated a general reduction in
mean abundance of some organisms close to the outfall,
either consistently (filamentous green algae) or in-
consistently (filamentous brown algae) with time. Simi-
larly, spatial patchiness at the scale of quadrat and
temporal changes in among-site differences were
generally reduced close to the outfall. These patterns
reflected a positive correlation between the mean and
the variance, which is a common feature of ecological
variables such as density and cover of organisms (Taylor
1961, Hurlbert 1990). Effects on variances, however,
could be detected more easily than effects on means in
this study. This reinforced the view that careful studies of
environmental impacts should consider potential effects
on variances in addition to potential mean effects on
populations, as suggested by other studies (Underwood
1991, Warwick & Clarke 1993, Chapman et al. 1995).

Given the sensitivity of measures of spatial and tem-
poral variance in abundance to anthropogenic distur-
bance, it is important that the tests based on these
measures can unambiguously identify the nature of the
impact and the scales over which impacts occur. Tradi-
tionally, 2-tailed F ratios in beyond-BACI designs have
been based on mean squares that are linear combina-
tion of variances (but see Bishop et al. 2002). For exam-
ple, the mean square of the T × S(L) interaction is a lin-
ear combination that includes the variance among
replicate quadrats and the variance due to the Time ×
Site interaction (i.e. σ2

e + nσ2
T × S(L), where n is the

number of replicate quadrats). If there is homogeneity
of variances, as tested by Cochran’s C-test prior to
ANOVA, a 2-tailed F ratio based on the T × S(Cs) and
T × S(I) mean squares is a test of the null hypothesis
that the Time × Site interaction does not differ between
disturbed and control locations. Rejection of this
hypothesis unambiguously identifies the Time × Site
interaction as the component of the mean square
potentially affected by disturbance, providing insights
into the nature and scale of the impact.

In contrast, if there is heterogeneity of variances, as
occurred for several taxa in this study, 1 or both compo-
nents of the mean square of the T × S(L) interaction
may contribute to a significant 2-tailed F test. In this
case, it is not possible to determine whether the impact
occurs as a change in spatial variance among replicate
units, as a change in the Time × Site interaction or as
some combination of these. Comparison of variance
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components seems a profitable strategy in the pres-
ence of heterogeneity of variances to detect impacts
that affect spatial and/or temporal variability in the
abundances of populations.

Admittedly, tests of differences between variance
components are complicated by the fact that apart
from estimates of the error variance, these quantities
have unknown distributions (Searle et al. 1992). Our
approach here was that of deriving such distributions
empirically using bootstrapping procedures. This
enabled us to construct bootstrap confidence intervals
that could be used as the basis for formal comparisons.

Specific pattern

Changes in the structure of sessile assemblages on
hard substrates near a sewage discharge have already
been documented in properly designed sampling pro-
grams from both subtidal and intertidal temperate
areas (Chapman et al. 1995, Roberts et al. 1998,
Archambault et al. 2001).

There is a wide range of potential mechanisms that
may be responsible for such patterns. A discharge of
primary or secondary treated sewage can increase the
amount of suspended solids in the water column and
modify the rate of sedimentation. The effects of sedi-
mentation on algae (Airoldi & Virgilio 1998, Irving &
Connell 2002a) and sessile invertebrates (Carballo et
al. 1996, Naranjo et al. 1996) have been widely
reported. Sewage plumes can also reduce light by
shading the bottom and this can have an influence on
benthic algae (Kennelly 1989) and invertebrates
(Glasby 1999, Saunders & Connell 2001). The interac-
tive processes of sedimentation and penetration of
light on the maintenance of heterogeneity of subtidal
habitats have also been pointed out recently (Irving &
Connell 2002b). Sewage can also discharge organic
and inorganic compounds and the uptake of chemicals
by organisms have been suggested by some authors as
potentially altering the relative abundance of taxa in
assemblages (Otway et al. 1996, but see Gray 2002).
Clearly, the processes producing changes in assem-
blages at the outfall are likely to be complex and would
require detailed experimental inspection.

Colpomenia sinuosa and red algae of the genus Ptero-
cladiella and Gelidium (here grouped into the family
Gelidiaceae) have been previously reported as typical of
organic polluted water (Chryssovergis & Panayotidis
1995). Extensive mats of macroalgae associated with
organically enriched waters have been described for
many areas (May 1985, Lopez-Gappa et al. 1990). It is
reasonable to assume in this case that increasing nutri-
ents in the vicinity of the outfall can support the standing
crop observed for these algae. However, other models

(e.g. the abundance of grazers and their rate of grazing,
variation in salinity, etc.) remain to be explored before
claiming that nutrients are the only factors controlling
the abundance of such algae at a sewage outfall.

We found a significant increase in spatial variation
among replicates in the total number of taxa at the out-
fall location compared to the control locations. This is
consistent with results obtained in some other studies
(Roberts 1996, Underwood & Chapman 1996) but not
with all (Roberts et al. 1998), where no significant
effect of sewage effluents on the total number of taxa
was found. There was no apparent difference, how-
ever, in the mean number of taxa at I compared to Cs
in the present study. For several individual taxa, in
contrast, there was decreased spatial variation at the
scale of replicate quadrats, in addition to Space × Time
interactions at I compared to Cs. This was often ac-
companied by decreases in their average cover.

Changes in small-scale variability among replicates
may well be a diagnostic feature for stressed assem-
blages. There are several reasons why small-scale
variability may increase or decrease in stressed assem-
blages. These include changes in total cover or total
number of taxa in the observation units, changes in the
variance to mean ratio for particular species, or
changes in taxonomic composition (Warwick & Clarke
1993, Chapman et al. 1995). We propose that integrat-
ing univariate and multivariate approaches and distin-
guishing differences in means from differences in
variances can bring important insights into studies of
environmental impacts and, furthermore, can help
generate new models to explain mechanisms causing
changes in natural (and unnatural) systems.
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